Server road map: Beyond quad-core

Multicore server evolution is just beginning

What's ahead

There seems to be no upper limit to the core escalation for the foreseeable future. Intel recently announced it has created a research chip with 80 cores, which is expected to dissipate less energy than its current quad-core design. That chip is probably five to eight years away from commercialization, but other vendors are already hitting the market with "massively parallel" processor offerings.

Sun Microsystems in late 2005 introduced its first Sparc processors with multiple cores, code-named Niagara. That chip has eight cores, and each core operates with four independent threads, providing a total of 32 computing elements on a single chip. By midyear, Sun plans to introduce Niagara 2, which will remain eight cores but will have eight threads per core for a total of 64 execution threads. Sun also plans to introduce in mid-2008 its Rock processor, another Sparc-based design which will have 16 cores.

On the megacore front is Azul Systems, which has been offering servers based on its 24-core Vega processor since 2005. In December, Azul introduced new servers that use its latest-generation Vega 2 processor, which has 48 cores.

Early multicore customers

CitiStreet, a benefits outsourcer, is one of the first businesses to deploy the Vega 2-based Azul Compute Appliance servers. CitiStreet has seven of the servers, each with two 48-core processors. The systems are used across all production, disaster recovery, acceptance and test environments.

Barry Strasnick, CIO of CitiStreet, says the servers allow his company to quickly scale infrastructure to meet high growth demands while providing a 100 percent performance boost over the dual-core Xeon-based servers it had used previously.

"Cost-effectively managing the growth we are experiencing requires scalability and performance [beyond] what traditional servers alone can deliver," Strasnick said.

Web and e-mail hosting provider Concentric Systems Inc. made a switch from older single-core Sparc-based servers to Sun's Niagara-based servers late last year. The company has been able to replace as many as eight of the older systems with each new server, said Barbara Branaman, Concentric's president.

"We are always looking for ways to handle more volume on fewer boxes, which of course can help us reduce energy consumption," Branaman said. "Being able to grow capacity within the same physical footprint and power envelope is a huge advantage."

To date, Concentric has deployed nine Sun Fire T2000 and T1000 Niagara-based servers. The company has plans to add five systems and is looking forward to further performance increases expected by the upcoming Niagara 2-based servers, she said.

Geoff Shorter, IT infrastructure manager at The Charlotte Observer, is expecting significant improvement in virtualization density when the newspaper begins implementing quad-core servers based on Xeon processors later this year.

The newspaper has already started migrating some of its most-critical applications to a virtualized environment on dual-core Xeon servers where Shorter has been able to run seven to 12 virtual servers per processor. He believes he will be able to get 15 to 30 virtual severs per processor on quad-core systems.

"If you can get 10 virtual servers on one hardware node, that may cost you about US$12,000, as compared to US$50,000 for 10 hardware-based servers," he said.

Join the newsletter!


Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

More about Advanced Micro Devices Far EastAMDBillCore DesignDellGartnerHISIBM AustraliaInsight 64IntelMicrosoftNiagaraRockSocketSun MicrosystemsVMware Australia

Show Comments