The mobile Internet you'll be using in 10 years

The US military's new space based communications network opens a glimpse at the sort of data rates and network that you might be using on mobile devices within the next decade.

After being plagued with project overruns and a scaling back of the final system, the US military's next generation satellite communications network is another step closer to reality, with completion of the payload module for the third and final Advanced Extremely High Frequency (EHF) satellite.

The Advanced EHF communications satellites are an enhanced version of the existing Milstar constellation, which they are scheduled to replace, but they aren't without their problems.

Although the EHF band is a relatively lightly used part of the electromagnetic spectrum (30-300 GHz), it is for good reason.

Atmospheric attenuation is the biggest problem faced in this band, especially around 60 GHz, however the frequencies are viable for short distance terrestrial based communication links, such as microwave Internet and telecommunication links (which already operate in this band). Millimetre wave radar, probably best known as the radar that can see through your clothes but not your skin, also operates in this band.

Designed to avoid problematic frequencies that are more susceptible to attenuation, but accepting increased overall atmospheric attenuation, are an increasing number of military and civil satellite systems that are using this band for uplink and downlink, as well as inter-satellite communication. Inter-satellite communication is really where EHF equipment shines (no atmosphere, small antennas, high data rates).

Civilian systems are currently around the Ku band (Intelsat), providing data rates of up to 2-4 Mbps (14 GHz uplink, 12 GHz downlink) however these rates have still to trickle into everyday user's hands for remote and mobile Internet access. It is more common that an aggregator will access this link/rate and use that to then portion out local Internet access. Systems such as this are in use for remote Australian territories like Cocos and Christmas Islands, and formed the backbone of Boeing's stillborn Connexion in-flight Internet access. High ongoing access costs (basically a share of the overall cost of the satellite) and limited access slots help keep the technology away from everyday use at this time. Militaries and governments around the globe also lease access on these circuits when they need the added capability, with Intelsat and Inmarsat systems being used in the first Gulf War.

Advanced EHF is designed to provide 24 hour coverage from 65 North, to 65 South across the K and Ka sub bands, and when combined with the prototyped Extended Data Rate (XDR) terminals and systems, will offer up to 8.2 Mbps data rates for around 4,000 terminals in concurrent use per satellite footprint (whether that scales to 12,000 systems in concurrent use globally isn't clear from source material).

Within the tri-satellite constellation, inter-satellite EHF links will allow terminals on opposite sides of the globe to communicate in near real-time without the use of a terrestrial link. Combined with smaller, directional antennas and the various options for anti-jamming technology, it represents a significant military capability for the US.

Network Centric Warfare advocates are looking forward to the capability that these systems will provide their pet theories, but if civil use of the Internet has shown anything, it is that data traffic will expand to fill the links available to it, so the overall added benefit will have to wait to be seen (of course it will mean that even in a warzone you won't be immune to 100MB PowerPoint presentations clogging up your network).

Already plans are being drawn up for the Transformational Satellite Communications System (T-Sat) which will replace Advanced EHF starting sometime in 2013, however it is already facing funding troubles. This could be problematic, with Advanced EHF still struggling to reach capability and the final launch not scheduled until April 2010. Dropping the fourth satellite of the Advanced EHF constellation has been planned to give the USAF time to implement T-Sat more rapidly.

If GPS and remote imaging (think Google Earth) have proven anything, it is that technology initially developed for military purposes, and extremely expensive for initial civil use, will eventually reach the point where it forms part of our daily lives without us ever being conscious of the massive investment to get to that point.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags mobile internet

More about BackboneBoeing AustraliaGoogleInmarsatIntelsatNorthrop Grumman

Show Comments
[]