What's next for Wi-Fi?

The huge 11n performance jump -- to 300Mbps data rate and roughly 100M to 150Mbps throughput -- will become the basis for unwiring work and life to a much greater extent than ever before

6. Self-managing Wi-Fi clients

Wi-Fi vendors have been creating a range of proprietary goodies to make user devices inherently smarter about how they work with an access point. Today the access point usually marks the limit of Wi-Fi network management; client radios are in a relative management vacuum.

If you add intelligence, via new standard Wi-Fi management protocols, to both the client and the access point, they could cooperate in a lot of interesting ways.

Imagine that your netboook's Wi-Fi adapter, or your Wi-Fi VoIP phone, can chop power use when the radio isn't sending or receiving. Or with shared location data, an access point can re-direct a Wi-Fi voice session to a more optimal neighbor, or to a less-loaded one if the access point is in danger of traffic overload. Wi-Fi network infrastructures can locate a client's position, for example, outside of a building, and block or grant connectivity based on that data.

The 802.11v standard, which is likely to be finalized in July 2010, has a number of elements to tackle improved Wi-Fi management. It will add an array of counters for statistics gathering, add power management to improve battery life and improve support for location data. It will have to be implemented on both client and access point radios.

This broad idea of client coordination also is being addressed by the Wi-Fi Alliance's Wi-Fi Multimedia Admission Control specification, currently in development. It will let wireless networks negotiate and manage streaming media sessions, so a request for a high-definition video doesn't choke off Wi-Fi voice users on the same access point. The Alliance is weighing a specific Wi-Fi network management specification, borrowing from several relevant IEEE standards and adding additional  management features.

7. Improved mobility via smarter RF management

A similar lack of cooperation plagues RF management, because access points and client radios typically don't know a lot about each other or their neighbors in terms of understanding their respective radio frequency environments. This one-sidedness makes it harder to optimize and manage RF.

For example, as a Wi-Fi mobile phone moves away from one access point, it triggers a demanding process of blindly reaching out to find another one. But if the client can ask its access point, "who are your neighbors and which is the best one to connect with next?" then device and network can cooperate better. At the same time, Wi-Fi access points will be able to "see" the client's RF environment, identifying weak signals or poor coverage, and take steps to optimize the connection.

The IEEE 802.11k radio resource management standard was published last year to address this, but Wi-Fi vendors had already been implementing an array of proprietary features to address this challenge. They all involve extending control and intelligence to the Wi-Fi client, and coordinating its requirements, behavior and activities with the Wi-Fi access point infrastructure. Aruba's 2.0 release of its Adaptive Radio Management technology is one example.

Meanwhile, the Wi-Fi Alliance is crafting its Voice Enterprise certification using some of the features in 11k. The goal is optimizing call quality in large-scale, enterprise Wi-Fi voice environments.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags NetworkingWi-Fi802.11n

More about AppleAruba Wireless NetworksAtheros CommunicationsBeldenBroadcomIEEEQuantenna CommunicationsRuckus WirelessTBCT-MobileT-MobileTrapeze Networks

Show Comments
[]