High-Density Storage

What happens when we hit the wall for current magnetic storage? Where do we turn for more storage? A number of technologies that could help are under development.

The first storage media -- paper tape and punched cards -- were inefficient, slow and bulky. These gave way to magnetic storage: core memory, drums and, finally, hard drives. For backup, there were removable media: magnetic tape reels and cartridges, floppy disks and removable hard drives. Then optics (CD-ROM and DVD drives) supplanted magnetism for archival uses. Today's computers need to store more data than ever. The most recent storage generation replaces moving parts with solid-state electronics.

Through all this evolution runs a constant thread: Storage got faster and it got smaller, packing more data into less space. We measure this storage density (also called areal density) in units of bits per square inch (or bit/in. 2 ). The increase in density over time, particularly with magnetic media, has been remarkable; the cost-effectiveness is astronomical.

A hard drive with a density of 329Gbit/in. 2 was just announced by Seagate Technology. For perspective, researchers believe that 1Tbit/in. 2 represents the theoretical limit for current magnetic storage, and we may approach that limit in just a few years. What happens when we hit the wall? Where do we turn for more storage? A number of technologies that could help are under development.

Longitudinal vs. Perpendicular Magnetic Recording

In longitudinal recording, magnetic data bits are aligned parallel to the disk surface, following concentric tracks. This limits storage density to 100 to 200Gbit/in. 2 or so. Perpendicular recording, introduced commercially in 2005, puts data bits in a vertical magnetic alignment that is perpendicular to the disk surface; it's as if the data bits are standing up rather than lying down.

Normally, the amount of magnetic material used to record a bit must be sufficiently large to retain its polarity so that it can't be accidentally reversed. Perpendicular recording allows the use of finer-grained material in which it's more difficult to reverse the magnetic orientation. Thus, perpendicular recording permits physically smaller bits; theoretically a density of 1Tbit/in. 2 would be possible.

Heat-Assisted Magnetic Recording

Still in the research stages, HAMR uses a laser to heat the storage medium while writing to it. It uses a different type of recording medium than conventional magnetic technology. That new medium is often an iron-platinum alloy. This allows much higher storage densities (potentially up to 50Tbit/in. 2 ) but requires the application of heat to change the magnetic polarity in the area that delineates each bit.

Patterned Media

Regular magnetic disks store each bit across several hundred grains of magnetic material. With patterned media , photolithography lays down a uniform grid of small magnetic cells, each storing one bit in less space, permitting higher storage density.

In 2007, Fujitsu Computer Products achieved a storage density of 1Tbit/in. 2 using this method.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags high-density storage

More about FujitsuInPhase TechnologiesLaserSandiskSandiskSeagateSeagate TechnologySECSpeedStorageTekWikipedia

Show Comments
[]